Advertisements
Advertisements
Question
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
Solution
L.H.S. = `((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA))`
= `(cosec^2A + cot^2A - 2cosecAcotA + 1)/(secA(cosecA - cotA))`
= `(cosec^2A + (1 + cot^2A) - 2cosecAcotA)/(secA(cosecA - cotA))`
= `(cosec^2A + cosec^2A - 2cosecAcotA)/(secA(cosecA - cotA))`
= `(2cosec^2A - 2cosecAcotA)/(secA(cosecA - cotA))`
= `(2cosecA(cosecA - cotA))/(secA(cosecA - cotA))`
= `(2cosecA)/secA`
= `(2 1/sinA)/(1/cosA)`
= `2/sinA xx cosA/1`
= `2 cosA/sinA`
= 2 cot A = R.H.S.
APPEARS IN
RELATED QUESTIONS
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ