Advertisements
Advertisements
प्रश्न
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
उत्तर
L.H.S. = `((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA))`
= `(cosec^2A + cot^2A - 2cosecAcotA + 1)/(secA(cosecA - cotA))`
= `(cosec^2A + (1 + cot^2A) - 2cosecAcotA)/(secA(cosecA - cotA))`
= `(cosec^2A + cosec^2A - 2cosecAcotA)/(secA(cosecA - cotA))`
= `(2cosec^2A - 2cosecAcotA)/(secA(cosecA - cotA))`
= `(2cosecA(cosecA - cotA))/(secA(cosecA - cotA))`
= `(2cosecA)/secA`
= `(2 1/sinA)/(1/cosA)`
= `2/sinA xx cosA/1`
= `2 cosA/sinA`
= 2 cot A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.