Advertisements
Advertisements
प्रश्न
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
उत्तर
L.H.S = `(sin^2theta)/(cos theta) + cos theta`
= `(sin^2theta + cos^2theta)/costheta`
= `1/costheta` ......[∵ sin2θ + cos2θ = 1]
= sec θ
= R.H.S
∴ `(sin^2theta)/(cos theta) + cos theta` = sec θ
APPEARS IN
संबंधित प्रश्न
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
Write the value of tan1° tan 2° ........ tan 89° .
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
If cos A + cos2A = 1, then sin2A + sin4 A = ?
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
sec θ when expressed in term of cot θ, is equal to ______.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.