Advertisements
Advertisements
प्रश्न
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
उत्तर
LHS = sin θ sin( 90° - θ) - cos θ cos( 90° - θ)
= sin θ . cos θ - cos θ . sin θ
= 0
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to