मराठी

If a Cot θ + B Cosec θ = P and B Cot θ − a Cosec θ = Q, Then P2 − Q2 - Mathematics

Advertisements
Advertisements

प्रश्न

If cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2 

पर्याय

  • a2 − b2

  • b2 − a2

  • a2 + b2

  •  b − a

MCQ

उत्तर

Given: 

`a cotθ+b cosecθ=P,`

`b cotθ+a cosecθ=q `

Squaring both the equations and then subtracting the second from the first, we have

`(p)^2-(q)^2=(a cot θ+b.cosecθ)^2-(b cot θ+a cosecθ)^2`

`=(a^2cot^θ+b^2 cosec^2θ+2.a cotθ.b cosecθ)-(b^2 cot^2θ+a^2 cosec^2θ+2 cotθ.a cosecθ)`

`=a^2 cot^2θ+b^2 cosec^2θ+2 ab cotθ cosecθ-b^2 cot^2θ-a^2cosec^2θ-2ab cotθcosecθ`

`⇒a^2 cot^2θ+b^2 cosec^2θ-b^2 cot^2θ-a^2 cosec^2θ`

`⇒(b^2 cosec^θ-b^2 cot^2 θ)+(-a^2 cosec^2θ+a^2 cot^2θ)=p^2-q^2`

`⇒b^2(cosec^2θ-cot^2θ)-a^2(cosec^θ-cot^2θ)=p^2-q^2`

`⇒b^2(1)-a^2(1)=p^2-q^2`

`⇒b^2-a^2=p^2-q^2` 

`⇒p^2-q^2=b^2-a^2`

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.4 | Q 17 | पृष्ठ ५७

संबंधित प्रश्‍न

Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


Prove the following trigonometric identities.

if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`


Prove the following identities:

sec2 A + cosec2 A = sec2 A . cosec2 A


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


`(sec^2 theta-1) cot ^2 theta=1`


`((sin A-  sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0` 


If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`


Prove the following identity : 

`sqrt(cosec^2q - 1) = "cosq  cosecq"`


Prove the following identity : 

`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq


If cosθ = `5/13`, then find sinθ. 


A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.


`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A


Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.


If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.


The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.


Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×