Advertisements
Advertisements
प्रश्न
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
पर्याय
a2 − b2
b2 − a2
a2 + b2
b − a
उत्तर
Given:
`a cotθ+b cosecθ=P,`
`b cotθ+a cosecθ=q `
Squaring both the equations and then subtracting the second from the first, we have
`(p)^2-(q)^2=(a cot θ+b.cosecθ)^2-(b cot θ+a cosecθ)^2`
`=(a^2cot^θ+b^2 cosec^2θ+2.a cotθ.b cosecθ)-(b^2 cot^2θ+a^2 cosec^2θ+2 cotθ.a cosecθ)`
`=a^2 cot^2θ+b^2 cosec^2θ+2 ab cotθ cosecθ-b^2 cot^2θ-a^2cosec^2θ-2ab cotθcosecθ`
`⇒a^2 cot^2θ+b^2 cosec^2θ-b^2 cot^2θ-a^2 cosec^2θ`
`⇒(b^2 cosec^θ-b^2 cot^2 θ)+(-a^2 cosec^2θ+a^2 cot^2θ)=p^2-q^2`
`⇒b^2(cosec^2θ-cot^2θ)-a^2(cosec^θ-cot^2θ)=p^2-q^2`
`⇒b^2(1)-a^2(1)=p^2-q^2`
`⇒b^2-a^2=p^2-q^2`
`⇒p^2-q^2=b^2-a^2`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
`(sec^2 theta-1) cot ^2 theta=1`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
If cosθ = `5/13`, then find sinθ.
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that sec2 (90° - θ) + tan2 (90° - θ) = 1 + 2 cot2 θ.
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.