Advertisements
Advertisements
प्रश्न
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
उत्तर
We have ,
cos B = `3/5`
⇒ ` cos ( 90° - A ) = 3/5 ( As , A+ B = 90°)`
∴ sin A = `3/5`
APPEARS IN
संबंधित प्रश्न
9 sec2 A − 9 tan2 A = ______.
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
\[\frac{x^2 - 1}{2x}\] is equal to
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
tan θ × `sqrt(1 - sin^2 θ)` is equal to: