рдорд░рд╛рдареА

If X=A `Cos^3 Theta and Y = B Sin ^3 Theta ," Prove that " (X/A)^(2/3) + ( Y/B)^(2/3) = 1.` - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`

рдЙрддреНрддрд░

We have x = a `cos^3 theta `

 = > `x/a = cos^3 theta     ........(i)`

 Again , `y = b  sin^3 theta`

  =  > `y/b = sin^3 theta      .....(ii)`

 Now , LHS = `(x/a)^(2/3) + (y/b)^(2/3)`

 = `( cos^3 theta )^(2/3) + (sin^3 theta )^ (2/3 )`     [ from (i) and (ii)]

 =` cos^2 theta + sin^2 theta `

 =1

ЁЭР╗ЁЭСТЁЭСЫЁЭСРЁЭСТ, ЁЭР┐ЁЭР╗ЁЭСЖ = ЁЭСЕЁЭР╗ЁЭСЖ

        

shaalaa.com
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
рдкрд╛рда 8: Trigonometric Identities - Exercises 2

APPEARS IN

рд╡реНрд╣рд┐рдбрд┐рдУ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [6]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди

Prove the following trigonometric identities.

(sec2 θ − 1) (cosec2 θ − 1) = 1


Prove the following trigonometric identities.

sin2 A cot2 A + cos2 A tan2 A = 1


Prove the following trigonometric identities.

sec6θ = tan6θ + 3 tan2θ sec2θ + 1


Prove the following identities:

`sinA/(1 + cosA) = cosec A - cot A`


Show that : tan 10° tan 15° tan 75° tan 80° = 1


`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`


`(cos  ec^theta + cot theta )/( cos ec theta - cot theta  ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta  cot theta`


Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`


Prove the following identity : 

`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`


Prove the following identity :

`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`


If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`


Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0


Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.


Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.


Choose the correct alternative:

cos 45° = ?


`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?


Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)


The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×