Advertisements
Advertisements
प्रश्न
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
उत्तर
`(1+ tan^2 theta )(1+ sin theta )(1- sintheta)`
=` sec^2 theta (1- sin^2 theta )`
=`1/ cos^2 theta xx cos^2 theta`
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove that:
tan (55° + x) = cot (35° – x)
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos (α - β)/2` is ______.