Advertisements
Advertisements
प्रश्न
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
उत्तर
LHS = (secA - cosA)(secA + cosA)
= `(sec^2A - cos^2A) = 1 + tan^2A - (1 - sin^2A)`
= `tan^2A + sin^2A` = RHS
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ