Advertisements
Advertisements
प्रश्न
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
उत्तर
LHS = secA(1 - sinA)(secA + tanA)
= `1/cosA(1-sinA)(1/cosA + sinA/cosA)`
= `((1 -sinA))/cosA((1 + sinA)/cosA) = ((1 - sin^2A)/cos^2A)`
= `(cos^2A/cos^2A)`
= 1 = RHS
APPEARS IN
संबंधित प्रश्न
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ