मराठी

If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.

पर्याय

  • `1/sqrt(3)`

  • `sqrt(3)`

  • 1

  • 0

MCQ
रिकाम्या जागा भरा

उत्तर

If cos 9α = sinα and 9α < 90°, then the value of tan5α is 1.

Explanation:

According to the question,

cos 9α = sin α and 9α < 90°

i.e. 9α is an acute angle

We know that,

sin(90° – θ) = cos θ

So, cos 9α = sin(90° – α)

Since, cos 9α = sin(90° – 9α) and sin(90° – α) = sin α

Thus, sin(90° – 9α) = sin α

90° – 9α = α

10α = 90°

α = 9°

Substituting α = 9° in tan 5α, we get,

tan 5α = tan(5 × 9°)

= tan 45°

= 1

∴ tan 5α = 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction To Trigonometry and Its Applications - Exercise 8.1 [पृष्ठ ९०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 8 Introduction To Trigonometry and Its Applications
Exercise 8.1 | Q 7 | पृष्ठ ९०

संबंधित प्रश्‍न

Express the ratios cos A, tan A and sec A in terms of sin A.


If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.


Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


Prove the following trigonometric identities.

sin2 A cot2 A + cos2 A tan2 A = 1


Prove the following trigonometric identities.

`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`


If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


Prove the following identities:

`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`


If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A


Show that none of the following is an identity:

`tan^2 theta + sin theta = cos^2 theta`


If `sec theta = x ,"write the value of tan"  theta`.


sec4 A − sec2 A is equal to


\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]


9 sec2 A − 9 tan2 A is equal to


Prove the following identity :

`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


Choose the correct alternative:

sec2θ – tan2θ =?


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


Prove the following:

`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×