Advertisements
Advertisements
प्रश्न
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
पर्याय
`1/sqrt(3)`
`sqrt(3)`
1
0
उत्तर
If cos 9α = sinα and 9α < 90°, then the value of tan5α is 1.
Explanation:
According to the question,
cos 9α = sin α and 9α < 90°
i.e. 9α is an acute angle
We know that,
sin(90° – θ) = cos θ
So, cos 9α = sin(90° – α)
Since, cos 9α = sin(90° – 9α) and sin(90° – α) = sin α
Thus, sin(90° – 9α) = sin α
90° – 9α = α
10α = 90°
α = 9°
Substituting α = 9° in tan 5α, we get,
tan 5α = tan(5 × 9°)
= tan 45°
= 1
∴ tan 5α = 1
APPEARS IN
संबंधित प्रश्न
Express the ratios cos A, tan A and sec A in terms of sin A.
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
If `sec theta = x ,"write the value of tan" theta`.
sec4 A − sec2 A is equal to
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Choose the correct alternative:
sec2θ – tan2θ =?
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ