Advertisements
Advertisements
प्रश्न
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
विकल्प
`1/sqrt(3)`
`sqrt(3)`
1
0
उत्तर
If cos 9α = sinα and 9α < 90°, then the value of tan5α is 1.
Explanation:
According to the question,
cos 9α = sin α and 9α < 90°
i.e. 9α is an acute angle
We know that,
sin(90° – θ) = cos θ
So, cos 9α = sin(90° – α)
Since, cos 9α = sin(90° – 9α) and sin(90° – α) = sin α
Thus, sin(90° – 9α) = sin α
90° – 9α = α
10α = 90°
α = 9°
Substituting α = 9° in tan 5α, we get,
tan 5α = tan(5 × 9°)
= tan 45°
= 1
∴ tan 5α = 1
APPEARS IN
संबंधित प्रश्न
Prove that `cosA/(1+sinA) + tan A = secA`
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.