हिंदी

If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.

विकल्प

  • `1/sqrt(3)`

  • `sqrt(3)`

  • 1

  • 0

MCQ
रिक्त स्थान भरें

उत्तर

If cos 9α = sinα and 9α < 90°, then the value of tan5α is 1.

Explanation:

According to the question,

cos 9α = sin α and 9α < 90°

i.e. 9α is an acute angle

We know that,

sin(90° – θ) = cos θ

So, cos 9α = sin(90° – α)

Since, cos 9α = sin(90° – 9α) and sin(90° – α) = sin α

Thus, sin(90° – 9α) = sin α

90° – 9α = α

10α = 90°

α = 9°

Substituting α = 9° in tan 5α, we get,

tan 5α = tan(5 × 9°)

= tan 45°

= 1

∴ tan 5α = 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction To Trigonometry and Its Applications - Exercise 8.1 [पृष्ठ ९०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 8 Introduction To Trigonometry and Its Applications
Exercise 8.1 | Q 7 | पृष्ठ ९०

संबंधित प्रश्न

Prove that `cosA/(1+sinA) + tan A =  secA`


Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then 


Prove the following identity :

`sec^2A.cosec^2A = tan^2A + cot^2A + 2`


Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq


Prove the following identity :

`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`


If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that   `x^2 + y^2 + z^2 = r^2`


If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1


Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.


Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ


If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.


If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×