Advertisements
Advertisements
Question
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
Options
`1/sqrt(3)`
`sqrt(3)`
1
0
Solution
If cos 9α = sinα and 9α < 90°, then the value of tan5α is 1.
Explanation:
According to the question,
cos 9α = sin α and 9α < 90°
i.e. 9α is an acute angle
We know that,
sin(90° – θ) = cos θ
So, cos 9α = sin(90° – α)
Since, cos 9α = sin(90° – 9α) and sin(90° – α) = sin α
Thus, sin(90° – 9α) = sin α
90° – 9α = α
10α = 90°
α = 9°
Substituting α = 9° in tan 5α, we get,
tan 5α = tan(5 × 9°)
= tan 45°
= 1
∴ tan 5α = 1
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
Choose the correct alternative:
cos θ. sec θ = ?
Choose the correct alternative:
cot θ . tan θ = ?
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.