English

If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______. - Mathematics

Advertisements
Advertisements

Question

If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.

Options

  • `1/sqrt(3)`

  • `sqrt(3)`

  • 1

  • 0

MCQ
Fill in the Blanks

Solution

If cos 9α = sinα and 9α < 90°, then the value of tan5α is 1.

Explanation:

According to the question,

cos 9α = sin α and 9α < 90°

i.e. 9α is an acute angle

We know that,

sin(90° – θ) = cos θ

So, cos 9α = sin(90° – α)

Since, cos 9α = sin(90° – 9α) and sin(90° – α) = sin α

Thus, sin(90° – 9α) = sin α

90° – 9α = α

10α = 90°

α = 9°

Substituting α = 9° in tan 5α, we get,

tan 5α = tan(5 × 9°)

= tan 45°

= 1

∴ tan 5α = 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction To Trigonometry and Its Applications - Exercise 8.1 [Page 90]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 10
Chapter 8 Introduction To Trigonometry and Its Applications
Exercise 8.1 | Q 7 | Page 90

RELATED QUESTIONS

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


Prove the following trigonometric identities.

`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta  + cot theta`


Prove the following trigonometric identities.

`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


Prove the following identities:

`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`


`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`


`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`


If `sqrt(3) sin theta = cos theta  and theta ` is an acute angle, find the value of θ .


 Write True' or False' and justify your answer  the following : 

The value of sin θ+cos θ is always greater than 1 .


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


Prove the following identity : 

`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`


Prove the following identity :

`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`


If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1


Without using trigonometric table , evaluate : 

`cosec49°cos41° + (tan31°)/(cot59°)`


For ΔABC , prove that : 

`sin((A + B)/2) = cos"C/2`


Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.


Prove the following identities.

`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ


Choose the correct alternative:

cos θ. sec θ = ?


Choose the correct alternative:

cot θ . tan θ = ?


If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×