Advertisements
Advertisements
Question
Choose the correct alternative:
cot θ . tan θ = ?
Options
1
0
2
`sqrt(2)`
Solution
1
cot θ. tan θ = `1/"tan θ"`. tan θ = 1.
APPEARS IN
RELATED QUESTIONS
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Write the value of tan1° tan 2° ........ tan 89° .
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
If sec θ = `25/7`, then find the value of tan θ.
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Prove that sec2θ – cos2θ = tan2θ + sin2θ
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ