English

If sec θ = 257, then find the value of tan θ. - Geometry Mathematics 2

Advertisements
Advertisements

Question

If sec θ = `25/7`, then find the value of tan θ.

Sum

Solution

∵ sec2θ – tan2θ = 1   ......[Identities]

`(25/7)^2 - ("tan"  theta)^2 = 1`

`625/49 -1 = ("tan"  theta)^2`

`(625 - 49)/49 = ("tan"  theta)^2`

`576/49 = ("tan"  theta)^2`

`"tan"  theta = 24/7`  

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) Set 1

APPEARS IN

RELATED QUESTIONS

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


Prove the following identities:

`cosA/(1 - sinA) = sec A + tan A`


Prove the following identities:

`(sinAtanA)/(1 - cosA) = 1 + secA`


Prove the following identities:

`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`


Prove that:

`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`


(i)` (1-cos^2 theta )cosec^2theta = 1`


Show that none of the following is an identity: 

`sin^2 theta + sin  theta =2`


If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`


If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.


Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


Prove the following identity : 

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


Choose the correct alternative:

sin θ = `1/2`, then θ = ?


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


`sqrt((1 - cos^2theta) sec^2 theta) = tan theta` 


Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos  (α - β)/2` is ______.


Prove the following trigonometry identity:

(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×