Advertisements
Advertisements
Question
If sec θ = `25/7`, then find the value of tan θ.
Solution
∵ sec2θ – tan2θ = 1 ......[Identities]
`(25/7)^2 - ("tan" theta)^2 = 1`
`625/49 -1 = ("tan" theta)^2`
`(625 - 49)/49 = ("tan" theta)^2`
`576/49 = ("tan" theta)^2`
`"tan" theta = 24/7`
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
(i)` (1-cos^2 theta )cosec^2theta = 1`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos (α - β)/2` is ______.
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ