Advertisements
Advertisements
प्रश्न
If sec θ = `25/7`, then find the value of tan θ.
उत्तर
∵ sec2θ – tan2θ = 1 ......[Identities]
`(25/7)^2 - ("tan" theta)^2 = 1`
`625/49 -1 = ("tan" theta)^2`
`(625 - 49)/49 = ("tan" theta)^2`
`576/49 = ("tan" theta)^2`
`"tan" theta = 24/7`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
`sin^2 theta + 1/((1+tan^2 theta))=1`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.