Advertisements
Advertisements
рдкреНрд░рд╢реНрди
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
рдЙрддреНрддрд░
LHS= `(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta)`
=` ((1+ cos theta )- (1-cos^2 theta))/(sin theta(1+ cos theta))`
=`(cos theta + cos^2 theta)/( sin theta ( 1+ cos theta))`
=`(cos theta ( 1+ cos theta ))/ ( sin theta ( 1+ cos theta))`
=`cos theta/ sin theta`
= cot ЁЭЬГ
= RHS
Hence, L.H.S. = R.H.S.
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
From the figure find the value of sinθ.
What is the value of (1 + cot2 θ) sin2 θ?
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
(1 – cos2 A) is equal to ______.