рд╣рд┐рдВрджреА

`(1+ Cos Theta - Sin^2 Theta )/(Sin Theta (1+ Cos Theta))= Cot Theta` - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`

рдЙрддреНрддрд░

LHS= `(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta)`

     =` ((1+ cos theta )- (1-cos^2 theta))/(sin theta(1+ cos theta))`

     =`(cos theta + cos^2 theta)/( sin theta ( 1+ cos theta))`

     =`(cos theta ( 1+ cos theta ))/ ( sin theta ( 1+ cos theta))`

     =`cos theta/ sin theta`

     = cot ЁЭЬГ
     = RHS
Hence, L.H.S. = R.H.S.

  

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 8: Trigonometric Identities - Exercises 1

APPEARS IN

рдЖрд░рдПрд╕ рдЕрдЧреНрд░рд╡рд╛рд▓ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 8 Trigonometric Identities
Exercises 1 | Q 25

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [6]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди

Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.


If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.


If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1


Prove the following trigonometric identities:

`(1 - cos^2 A) cosec^2 A = 1`


Prove the following trigonometric identities.

`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`


Prove the following trigonometric identities

tan2 A + cot2 A = sec2 A cosec2 A − 2


Prove the following trigonometric identities.

`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`


if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`


If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2


If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`


Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.


From the figure find the value of sinθ.


What is the value of (1 + cot2 θ) sin2 θ?


Prove the following identity : 

`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`


Prove that `(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ


If cos A + cos2A = 1, then sin2A + sin4 A = ?


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


(1 – cos2 A) is equal to ______.


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×