हिंदी

Prove the Following Trigonometric Identities. (1/(Sec^2 Theta - Cos Theta) + 1/(Cosec^2 Theta - Sin^2 Theta)) Sin^2 Theta Cos^2 Theta = (1 - Sin^2 Theta Cos^2 Theta)/(2 + Sin^2 Theta + Cos^2 Theta) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`

उत्तर

In the given question, we need to prove

`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`

Now using `sec theta = 1/ cos theta` and `cosec theta = 1/sin theta` in LHS we get

LHS =`(1/((1/cos^2 theta) - cos^2 theta)  + 1/((1/sin^2 theta) - sin^2 theta)) sin^2 theta cos^2 theta`

`= (1/((1 - cos^4 theta)/cos^2 theta) + 1/((1 - sin^4 theta)/sin^2 theta)) sin^2 theta cos^2 theta`

`= ((cos^2 theta)/(1 - cos^4 theta) + sin^2 theta/(1 - sin^4 theta)) sin^2 theta cos^2 theta`

Further using the identity `a^2 - b^2 = (a + b)(a- b)` we get

LHS = `(cos^2 theta/((1 - cos^2 theta)(1 + cos^2 theta)) + sin^2 theta/((1 - sin^2 theta) (1 + sin^2 theta)))sin^2 theta cos^2 theta`

`= ((cos^2 theta)/(sin^2 theta(1 + cos^2 theta)) + sin^2 theta/(cos^2 theta(1 + sin^2 theta))) sin^2 theta cos^2 theta`

`= ((cos^2 theta(cos^2 theta(1 + sin^2 theta))+sin^2 theta(sin^2 theta(1 + cos^2 theta)))/(sin^2 theta cos^2 theta(1 + cos^2 theta)(1  +sin^2 theta))) sin^2 theta cos^2 theta`

`= ((cos^4 theta(1 + sin^2 theta) + sin^4 theta(1 + cos^2 theta))/((1 + cos^2 theta)(1 + sin^2 theta)))`

Further using the identity `sin^2 theta + cos^2 theta = 1` we get

LHS = `((cos^4 theta + cos^4 theta sin^2 theta + sin^4 theta + sin^4 theta cos^2 theta)/(1 + cos^2 theta + sin^2 theta + sin^2 theta cos^2 theta))`

`= (cos^4 theta + sin^4 theta + cos^2 theta sin^2 theta (cos^2 theta + sin^2 theta)) /(2 + sin^2 theta cos^2theta)`

`= ((cos^4 theta +sin^4 theta +cos^2 theta sin^2theta (1))/(2 + sin^2 theta cos^2 theta))`

Now, from the identity `a^2 + b^2 = (a + b)^2 - 2ab` we get

So,

LHS  = `(((cos^2 theta + sin^2 theta)^2  - 2cos^2 theta sin^2 theta +cos^2 theta sin^2 theta)/(2 + sin^2 theta cos^2 theta))`

`= (((1)^2 - cos^2 theta sin^2 theta)/(22 +sin^2 theta cos^2 theta))`

`= ((1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta cos^2 theta))`

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 57 | पृष्ठ ४५

संबंधित प्रश्न

If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.


Prove the following trigonometric identities.

`1/(1 + sin A) + 1/(1 - sin A) =  2sec^2 A`


Prove the following trigonometric identities.

`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`


Prove the following trigonometric identities.

`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`


If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2


Prove the following identities:

`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`


Prove the following identities:

`cosA/(1 + sinA) + tanA = secA`


`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`


`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ. 


\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to


A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.


Prove that:

`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`


If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.


If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to 


Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ


If cos A + cos2A = 1, then sin2A + sin4 A = ?


If sin A = `1/2`, then the value of sec A is ______.


Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×