Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
उत्तर
In the given question, we need to prove
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Now using `sec theta = 1/ cos theta` and `cosec theta = 1/sin theta` in LHS we get
LHS =`(1/((1/cos^2 theta) - cos^2 theta) + 1/((1/sin^2 theta) - sin^2 theta)) sin^2 theta cos^2 theta`
`= (1/((1 - cos^4 theta)/cos^2 theta) + 1/((1 - sin^4 theta)/sin^2 theta)) sin^2 theta cos^2 theta`
`= ((cos^2 theta)/(1 - cos^4 theta) + sin^2 theta/(1 - sin^4 theta)) sin^2 theta cos^2 theta`
Further using the identity `a^2 - b^2 = (a + b)(a- b)` we get
LHS = `(cos^2 theta/((1 - cos^2 theta)(1 + cos^2 theta)) + sin^2 theta/((1 - sin^2 theta) (1 + sin^2 theta)))sin^2 theta cos^2 theta`
`= ((cos^2 theta)/(sin^2 theta(1 + cos^2 theta)) + sin^2 theta/(cos^2 theta(1 + sin^2 theta))) sin^2 theta cos^2 theta`
`= ((cos^2 theta(cos^2 theta(1 + sin^2 theta))+sin^2 theta(sin^2 theta(1 + cos^2 theta)))/(sin^2 theta cos^2 theta(1 + cos^2 theta)(1 +sin^2 theta))) sin^2 theta cos^2 theta`
`= ((cos^4 theta(1 + sin^2 theta) + sin^4 theta(1 + cos^2 theta))/((1 + cos^2 theta)(1 + sin^2 theta)))`
Further using the identity `sin^2 theta + cos^2 theta = 1` we get
LHS = `((cos^4 theta + cos^4 theta sin^2 theta + sin^4 theta + sin^4 theta cos^2 theta)/(1 + cos^2 theta + sin^2 theta + sin^2 theta cos^2 theta))`
`= (cos^4 theta + sin^4 theta + cos^2 theta sin^2 theta (cos^2 theta + sin^2 theta)) /(2 + sin^2 theta cos^2theta)`
`= ((cos^4 theta +sin^4 theta +cos^2 theta sin^2theta (1))/(2 + sin^2 theta cos^2 theta))`
Now, from the identity `a^2 + b^2 = (a + b)^2 - 2ab` we get
So,
LHS = `(((cos^2 theta + sin^2 theta)^2 - 2cos^2 theta sin^2 theta +cos^2 theta sin^2 theta)/(2 + sin^2 theta cos^2 theta))`
`= (((1)^2 - cos^2 theta sin^2 theta)/(22 +sin^2 theta cos^2 theta))`
`= ((1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta cos^2 theta))`
Hence proved.
APPEARS IN
संबंधित प्रश्न
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If sin A = `1/2`, then the value of sec A is ______.
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.