Advertisements
Advertisements
प्रश्न
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
विकल्प
sec2 A
−1
cot2 A
tan2 A
उत्तर
Given:
`(1+tan^2 A)/(1+cot^2 A)`
`= (1+sin^2 A/cos^2 A)/(1+cos^2/sin^2A)`
`=(cos^2 A+sin^2 A/cos^2 A)/(sin^2 A+cos^2 A/sin^2A)`
`=(1/cos^2 A)/(1/sin^2A)`
`=sin^2 A/cos^2 A`
`= tan^2 A`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
sec4 A − sec2 A is equal to
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.