Advertisements
Advertisements
प्रश्न
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
पर्याय
sec2 A
−1
cot2 A
tan2 A
उत्तर
Given:
`(1+tan^2 A)/(1+cot^2 A)`
`= (1+sin^2 A/cos^2 A)/(1+cos^2/sin^2A)`
`=(cos^2 A+sin^2 A/cos^2 A)/(sin^2 A+cos^2 A/sin^2A)`
`=(1/cos^2 A)/(1/sin^2A)`
`=sin^2 A/cos^2 A`
`= tan^2 A`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Choose the correct alternative:
tan (90 – θ) = ?
Given that sin θ = `a/b`, then cos θ is equal to ______.
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
sec θ when expressed in term of cot θ, is equal to ______.