Advertisements
Advertisements
प्रश्न
(sec A + tan A) (1 − sin A) = ______.
पर्याय
sec A
sin A
cosec A
cos A
उत्तर
(sec A + tan A) (1 − sin A) = cos A.
Explanation:
The given expression is `(sec "A"+tan "A") (1-sin "A")`.
Simplifying the given expression, we have
`(sec "A"+tan "A")(1-sin "A")`
= `(1/cos "A"+sin "A"/cos "A")(1-sin "A")`
= `(1+sin "A")/(cos"A")xx(1-sin "A")`
= `((1+sin "A")(1-sin "A"))/(cos "A")`
= `(1-sin^2 "A")/cos "A"`
= `cos^2 "A"/cos "A"`
= `cos "A"`
संबंधित प्रश्न
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
Simplify : 2 sin30 + 3 tan45.
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
If 3 sin θ = 4 cos θ, then sec θ = ?
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.