Advertisements
Advertisements
प्रश्न
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
उत्तर
`(sec theta - 1)/(sec theta + 1)`
`= (1/cos theta - 1)/(1/cos theta + 1)`
= `((1 - cos theta)/cos theta)/((1 + cos theta)/cos theta)`
`= (1 - cos theta)/(1 +cos theta)`
`= (1 - cos theta)/(1 + cos theta) xx (1 + cos theta)/(1+ cos theta)`
`= (1 - cos^2 theta)/(1 + cos theta)^2`
`= sin^2 theta/(1 + cos theta)^2`
`= [sin theta/(1 + cos theta)]^2`
=RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`