Advertisements
Advertisements
प्रश्न
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
उत्तर
L.H.S = `(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1)`
= `(cot"A" + "cosec A" - ("cosec"^2"A" - cot^2"A"))/(cot"A" - "cosec A" + 1)` .....`[(because 1 + cot^2"A" = "cosec"^2"A"),(therefore "cosec"^2"A" - cot^2"A" = 1)]`
= `(cot"A" + "cosec A" - ("cosec A" + cot"A")("cosec A" - cot"A"))/(cot"A" - "cosec A" + 1)` .....[∵ a2 – b2 = (a + b) (a – b)]
= `((cot"A" + "cosec A")(1 - "cosec A" + cot "A"))/(cot"A" - "cosec A" + 1)`
= cot A + cosec A
= `"cos A"/"sin A" + 1/"sin A"`
= `(cos "A" + 1)/"sin A"`
= R.H.S
∴ `(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
APPEARS IN
संबंधित प्रश्न
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
Write the value of tan1° tan 2° ........ tan 89° .
(sec A + tan A) (1 − sin A) = ______.
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
If sec θ = `25/7`, then find the value of tan θ.
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Choose the correct alternative:
sec2θ – tan2θ =?
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.