English

Prove that cotA+cosec A-1cotA-cosec A+1=1+cosAsin A - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`

Sum

Solution

L.H.S = `(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1)`

= `(cot"A" + "cosec A" - ("cosec"^2"A" - cot^2"A"))/(cot"A" - "cosec A" + 1)`   .....`[(because 1 + cot^2"A" = "cosec"^2"A"),(therefore "cosec"^2"A" - cot^2"A" = 1)]`

= `(cot"A" + "cosec A" - ("cosec A" + cot"A")("cosec A" - cot"A"))/(cot"A" - "cosec A" + 1)`   .....[∵ a2 – b2 = (a + b) (a – b)]

= `((cot"A" + "cosec A")(1 - "cosec A" + cot "A"))/(cot"A" - "cosec A" + 1)`

= cot A + cosec A

= `"cos A"/"sin A" + 1/"sin A"`

= `(cos "A" + 1)/"sin A"`

= R.H.S

∴ `(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.4

RELATED QUESTIONS

Prove the following identities:

`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`

`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`


If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.


Prove the following trigonometric identities.

`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`


Prove the following trigonometric identities.

`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


`cot^2 theta - 1/(sin^2 theta ) = -1`a


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50°   cosec 40 °`


Write the value of sin A cos (90° − A) + cos A sin (90° − A).


If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =


Prove the following identities:

`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`


Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`


Prove that  `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`


Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.


Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.


If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1


Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B


If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1


If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×