English

Prove That: 2(Sin6θ + Cos6θ) - 3 ( Sin4θ + Cos4θ) + 1 = 0. - Mathematics

Advertisements
Advertisements

Question

Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.

Sum

Solution

LHS = 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1

= 2( sin2θ + cos2θ ) [ sin4θ + cos4θ - sin2θ.cos2θ ] - 3[ ( sin2θ + cos2θ )2 - 2sin2θ. cos2θ + 1

= 2 x 1 [ ( sin2θ + cos2θ )2 - 2 sin2θ.cos2θ - sin2θ.cos2θ ] - 3[ (1)2 - 2sin2θ. cos2θ ] + 1

= 2 [ (1)2 - 3 sin2θ.cos2θ ] - 3 [ 1 - 2 sin2θ. cos2θ ] + 1

= 2 - 6 sin2θ. cos2θ - 3 + 6 sin2θ. cos2θ  + 1

=  - 1 + 1 = 0
= RHS
Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 2 | Q 15
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×