English

If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2 - Mathematics

Advertisements
Advertisements

Question

If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2

Sum

Solution

Given,

m = a sec A + b tan A and n = a tan A + b sec A

m2 – n= (a sec A + b tan A)2 – ( a tan A + b sec A)2

= a2 sec2 A + b2 tan2 A + 2ab sec A tan A – (a2 tan2 A + b2 sec2 A + 2ab sec A tan A)

= sec2 A (a2 – b2) + tan2 A (b2 – a2)

= (a2 – b2) [sec2 A – tan2 A]

= (a2 – b2) [Since sec2 A – tan2 A = 1]

Hence, m2 – n2 = a2 – b2 

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometrical Identities - Exercise 21 (B) [Page 327]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 21 Trigonometrical Identities
Exercise 21 (B) | Q 3 | Page 327
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×