Advertisements
Advertisements
Question
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
Solution
Given,
m = a sec A + b tan A and n = a tan A + b sec A
m2 – n2 = (a sec A + b tan A)2 – ( a tan A + b sec A)2
= a2 sec2 A + b2 tan2 A + 2ab sec A tan A – (a2 tan2 A + b2 sec2 A + 2ab sec A tan A)
= sec2 A (a2 – b2) + tan2 A (b2 – a2)
= (a2 – b2) [sec2 A – tan2 A]
= (a2 – b2) [Since sec2 A – tan2 A = 1]
Hence, m2 – n2 = a2 – b2
APPEARS IN
RELATED QUESTIONS
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
If tan θ × A = sin θ, then A = ?
Show that tan4θ + tan2θ = sec4θ – sec2θ.
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`