Advertisements
Advertisements
Question
If tan θ × A = sin θ, then A = ?
Solution
tan θ × A = sin θ .....[Given]
∴ `(sin theta)/(cos theta) xx "A"` = sin θ
∴`1/(cos theta) xx "A"` = 1
∴ A = cos θ
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
If `sec theta = x ,"write the value of tan" theta`.
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
Choose the correct alternative:
sec2θ – tan2θ =?
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ