English

(sec θ + tan θ) . (sec θ – tan θ) = ? - Geometry Mathematics 2

Advertisements
Advertisements

Question

(sec θ + tan θ) . (sec θ – tan θ) = ?

Sum

Solution

(sec θ + tan θ)(sec θ – tan θ)

= sec2θ – tan2θ  ......[∵ (a + b)(a – b) = a2 – b2]

= 1       ......`[(because 1 + tan^2theta = sec^2theta),(therefore sec^2theta - tan^2theta = 1)]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.1 (B)

APPEARS IN

RELATED QUESTIONS

`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`

 


Express the ratios cos A, tan A and sec A in terms of sin A.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`


Prove the following trigonometric identities.

if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1


Prove the following identities:

`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


Prove the following identities:

(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A


`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


Prove the following identity : 

`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`


Prove the following identity : 

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`


Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


Prove the following identities:

`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.


Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1


If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1


Given that sin θ = `a/b`, then cos θ is equal to ______.


Prove the following trigonometry identity:

(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×