Advertisements
Advertisements
Question
`(sin 75^circ)/(cos 15^circ)` = ?
Solution
`(sin 75^circ)/(cos 15^circ)` = `(sin(90^circ - 15^circ))/(cos 15^circ)`
= `(cos 15^circ)/(cos 15^circ)` .....[∵ sin(90° – θ) = cos θ]
= 1
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Evaluate:
cosec (65° + A) – sec (25° – A)
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
What is the maximum value of \[\frac{1}{\sec \theta}\]
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If A and B are complementary angles, then
The value of tan 10° tan 15° tan 75° tan 80° is
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?