Advertisements
Advertisements
Question
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Solution
sin 59° + tan 63°
= sin(90 - 31)° + tan(90 - 27)°
= cos 31° + cot 27°
APPEARS IN
RELATED QUESTIONS
Evaluate `(sin 18^@)/(cos 72^@)`
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`