Advertisements
Advertisements
Question
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
Solution
14 sin 30°+ 6 cos 60°- 5 tan 45°
= `14(1/2) + 6(1/2) - 5(1)`
= 7 + 3 - 5
= 5.
APPEARS IN
RELATED QUESTIONS
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
Show that cos 38° cos 52° − sin 38° sin 52° = 0
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Solve.
`sec75/(cosec15)`
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
What is the maximum value of \[\frac{1}{\sec \theta}\]
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.