English

If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A. - Mathematics

Advertisements
Advertisements

Question

If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.

Solution

Given that,

sec 4A = cosec (A − 20°)

cosec (90° − 4A) = cosec (A − 20°)

90° − 4A= A− 20°

110° = 5A

A = 22°

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.3 [Page 189]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.3 | Q 5 | Page 189

RELATED QUESTIONS

Prove the following trigonometric identities.

(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ


if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`


Solve.
`sec75/(cosec15)`


solve.
sec18° - cot2 72°


Evaluate.
cos225° + cos265° - tan245°


Evaluate:

`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`


Evaluate:

`sin80^circ/(cos10^circ) + sin59^circ  sec31^circ`


Find the value of angle A, where 0° ≤ A ≤ 90°.

cos (90° – A) . sec 77° = 1


Use tables to find the acute angle θ, if the value of sin θ is 0.4848


Use tables to find the acute angle θ, if the value of cos θ is 0.6885


If A and B are complementary angles, prove that:

`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`


Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)


If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]  write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\] 


If 3 cos θ = 5 sin θ, then the value of

\[\frac{5 \sin \theta - 2 \sec^3 \theta + 2 \cos \theta}{5 \sin \theta + 2 \sec^3 \theta - 2 \cos \theta}\] is?

The value of tan 10° tan 15° tan 75° tan 80° is 


The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is


In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.

 

 


`(sin 75^circ)/(cos 15^circ)` = ?


In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?


The value of the expression (cos2 23° – sin2 67°) is positive.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×