Advertisements
Advertisements
Question
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Solution
Given that,
sec 4A = cosec (A − 20°)
cosec (90° − 4A) = cosec (A − 20°)
90° − 4A= A− 20°
110° = 5A
A = 22°
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Solve.
`sec75/(cosec15)`
solve.
sec2 18° - cot2 72°
Evaluate.
cos225° + cos265° - tan245°
Evaluate:
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Find the value of angle A, where 0° ≤ A ≤ 90°.
cos (90° – A) . sec 77° = 1
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If 3 cos θ = 5 sin θ, then the value of
The value of tan 10° tan 15° tan 75° tan 80° is
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
`(sin 75^circ)/(cos 15^circ)` = ?
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
The value of the expression (cos2 23° – sin2 67°) is positive.