Advertisements
Advertisements
Question
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Solution
∵ A + B + C = 180° (a.s.p. of ∆)
B + C = 180° – A
`( \frac{B+C}{2})=90^\circ -\frac{A}{2}`
`\sin ( \frac{B+C}{2})=\sin ( 90^\circ -\frac{A}{2})`
`\sin ( \frac{B+C}{2} )=\cos \frac{A}{2} `
APPEARS IN
RELATED QUESTIONS
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB