Advertisements
Advertisements
Question
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Solution
∵ 23 = 90 – 67 & 15 = 90 – 75
∴ sin 67° + cos 75°
= sin (90 – 23)° + cos (90 – 15)°
= cos 23° + sin 15°.
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables evaluate the following:
`(i) sin^2 25º + sin^2 65º `
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
solve.
sec2 18° - cot2 72°
Solve.
sin42° sin48° - cos42° cos48°
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Evaluate:
14 sin 30° + 6 cos 60° – 5 tan 45°
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
The value of cos 1° cos 2° cos 3° ..... cos 180° is
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
Solve: 2cos2θ + sin θ - 2 = 0.
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
If cot( 90 – A ) = 1, then ∠A = ?
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.
The value of (tan1° tan2° tan3° ... tan89°) is ______.
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.