Advertisements
Advertisements
Question
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Solution
LHS = (sinθ + 1 + cosθ)(sinθ − 1 + cosθ). secθcosecθ
= [sin2θ − sinθ + sinθcosθ + sinθ − 1 + cosθ + sinθcosθ − cosθ + cos2θ] `1/cosθ1/sinθ ` ...(∵ secθ = `1/cosθ and cosecθ = 1/sinθ`)
= [1 + 2sinθcosθ − 1]`1/cosθ 1/sinθ`
= [2sinθcosθ]`1/cosθ1/sinθ`
= 2 = RHS
Hence proved.
RELATED QUESTIONS
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
solve.
sec2 18° - cot2 72°
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
Write the maximum and minimum values of cos θ.
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
If tan θ = cot 37°, then the value of θ is
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.