Advertisements
Advertisements
Question
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Solution
sin 59° + tan 63°
= sin(90° – 31°) + tan(90° – 27°)
= cos 31° + cot 27°
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables evaluate the following:
`(i) sin^2 25º + sin^2 65º `
If tan A = cot B, prove that A + B = 90
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Evaluate:
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Use tables to find sine of 47° 32'
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
What is the maximum value of \[\frac{1}{\sec \theta}\]
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
The value of tan 1° tan 2° tan 3° ...... tan 89° is
The value of
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
If tan θ = cot 37°, then the value of θ is
If tan θ = 1, then sin θ . cos θ = ?
Sin 2B = 2 sin B is true when B is equal to ______.
`tan 47^circ/cot 43^circ` = 1