Advertisements
Advertisements
प्रश्न
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
उत्तर
sin 59° + tan 63°
= sin(90° – 31°) + tan(90° – 27°)
= cos 31° + cot 27°
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
What is the value of (cos2 67° – sin2 23°)?
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Solve.
`sec75/(cosec15)`
solve.
cos240° + cos250°
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find cosine of 26° 32’
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If A and B are complementary angles, then
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
If tan θ = cot 37°, then the value of θ is
The value of tan 1° tan 2° tan 3°…. tan 89° is