Advertisements
Advertisements
प्रश्न
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
उत्तर
From the tables, it is clear that tan 36° 24’ = 0.7373
tan θ − tan 36° 24’ = 0.7391 − 0.7373 = 0.0018
From the tables, diff of 4’ = 0.0018
Hence, θ = 36° 24’ + 4’ = 36° 28’
APPEARS IN
संबंधित प्रश्न
Evaluate `(tan 26^@)/(cot 64^@)`
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\] find the value of (sin A + cos A) sec A.
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
If x and y are complementary angles, then ______.