Advertisements
Advertisements
प्रश्न
If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\] find the value of (sin A + cos A) sec A.
उत्तर
Given: tan` A=5/12`
`"Perpendicular"/"Base"=5/12`
`"Perpendicular"=5`
`Base=12`
`"Hypotenuse"= sqrt(("Perpendicular")^2+("Base")^2)`
We know that: ` tan A="Perpendicular"/"Base"`
`"Hypotenuse"=sqrt((5)^2+(12)^2)`
`"Hypotenuse"=sqrt169`
`"Hypotenuse"=13`
Now we find, `(sin A+cos A) SecA`
⇒ `(Sin A+Cos A)Sec A=(5/13+12/13)xx13/12`
⇒ `(sin A+cos A)sec A=17/13xx13/12`
⇒ `(sin A+cos A) sec A=17/12`
Hence the value of` (sin A+ cos A)sec A "is" 17/12`
APPEARS IN
संबंधित प्रश्न
Evaluate `(sin 18^@)/(cos 72^@)`
What is the value of (cos2 67° – sin2 23°)?
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
solve.
sec2 18° - cot2 72°
Solve.
sin42° sin48° - cos42° cos48°
Evaluate:
tan(55° - A) - cot(35° + A)
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Use tables to find cosine of 9° 23’ + 15° 54’
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If tanθ = 2, find the values of other trigonometric ratios.
Write the maximum and minimum values of cos θ.
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
The value of tan 72° tan 18° is
`(sin 75^circ)/(cos 15^circ)` = ?
The value of (tan1° tan2° tan3° ... tan89°) is ______.