Advertisements
Advertisements
प्रश्न
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
विकल्प
1
\[\sqrt{3}\]
\[\frac{1}{2}\]
\[\frac{1}{\sqrt{2}}\]
उत्तर
Given that: `x tan 45° cos 60°=sin 60° cot 60°`
Here we have to find the value of x
We know that ` tan 45°=1, cos 60°=1/2 , sin 60°=sqrt3/2,cot 60°=1/sqrt3`
⇒` x tan 45° cos 60°= sin 60° cot 60°`
⇒` x xx1xx1/2=sqrt3/2xx1/sqrt3`
⇒ `x=1`
APPEARS IN
संबंधित प्रश्न
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
solve.
cos240° + cos250°
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Use trigonometrical tables to find tangent of 17° 27'
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Prove that:
tan (55° - A) - cot (35° + A)
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If tanθ = 2, find the values of other trigonometric ratios.
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
The value of tan 10° tan 15° tan 75° tan 80° is
The value of
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.