Advertisements
Advertisements
प्रश्न
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
उत्तर
Given that: `Cos 1° cos 2° cos3°...... cos179° cos 180°`
= `cos1° cos 2° cos 3°.... cos 179° cos 180°`
=`cos1° cos2° cos 3°....cos 89° cos90° cos 91° cos 179 cos 180`
= `cos1° cos2° cos 3°.....cos89°xx0..... cos 179° cos 180°`
=`0`
cos 90°=0
Hence the value of `cos 1° cos 2° cos3°..... cos 179° cos 180° is 0`
APPEARS IN
संबंधित प्रश्न
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
If tan A = cot B, prove that A + B = 90
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Evaluate.
sin235° + sin255°
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Use tables to find cosine of 2° 4’
Use tables to find cosine of 65° 41’
Use tables to find cosine of 9° 23’ + 15° 54’
Use trigonometrical tables to find tangent of 42° 18'
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If 8 tan x = 15, then sin x − cos x is equal to
If A and B are complementary angles, then
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is