Advertisements
Advertisements
प्रश्न
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
उत्तर
We have: `sqrt3 sinθ = cosθ`
⇒ `sqrt3 sin θ=cos θ`
⇒` sinθ/cos θ=1/sqrt3`
⇒ `tan θ= tan 30°`
⇒`θ=30°`
Hence the acute angle is 30°`
APPEARS IN
संबंधित प्रश्न
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
If tan A = cot B, prove that A + B = 90
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Use tables to find cosine of 65° 41’
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If A and B are complementary angles, then
Sin 2A = 2 sin A is true when A =
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
Evaluate: cos2 25° - sin2 65° - tan2 45°
If cot( 90 – A ) = 1, then ∠A = ?
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
The value of (tan1° tan2° tan3° ... tan89°) is ______.