Advertisements
Advertisements
प्रश्न
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
उत्तर
From the tables, it is clear that cos 10° = 0.9848
Hence, θ = 10°
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If the angle θ = –45° , find the value of tan θ.
If 8 tan x = 15, then sin x − cos x is equal to
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
`(sin 75^circ)/(cos 15^circ)` = ?
If sin 3A = cos 6A, then ∠A = ?
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?