Advertisements
Advertisements
Question
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Solution
From the tables, it is clear that cos 10° = 0.9848
Hence, θ = 10°
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Evaluate:
tan(55° - A) - cot(35° + A)
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Use tables to find cosine of 8° 12’
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Prove that:
tan (55° - A) - cot (35° + A)
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is