Advertisements
Advertisements
Question
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
Options
0
1
2
3
Solution
0
Explanation;
Hint:
cosec(70° + θ) – sec(20° – θ) + tan(65° + θ) – cot(25° – θ)
= sec[90° – (70° + θ)] – sec(20° – θ) + tan(65° + θ) – tan[90° – (25° – θ)]
= sec(20° – θ) – sec(20° – θ) + tan(65° + θ) – tan(65° + θ)
= 0
APPEARS IN
RELATED QUESTIONS
If the angle θ = -60° , find the value of sinθ .
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Use tables to find sine of 62° 57'
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
If 3 cos θ = 5 sin θ, then the value of
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]