Advertisements
Advertisements
Question
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
Solution
\[\begin{array}{l} {\text{LHS}=cos15}^\circ\cos {35}^\circ \cos {ec55}^\circ\cos {60}^\circ \cos {ec75}^\circ \\ \end{array}\]
\[\begin{array}{l}=cos( {90}^0 - {75}^0 )\cos( {90}^0 - {55}^0 )\frac{1}{\sin {55}^0}\times\frac{1}{2}\times\frac{1}{\sin {75}^0} \\ \end{array}\]
\[\begin{array}{l}{=sin75}^0 \sin {55}^0 \frac{1}{\sin {55}^0} \times \frac{1}{2} \times \frac{1}{\sin {75}^0} \\ \end{array}\]\[=\frac{1}{2} = \text{RHS}\]
APPEARS IN
RELATED QUESTIONS
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
Show that cos 38° cos 52° − sin 38° sin 52° = 0
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Solve.
sin15° cos75° + cos15° sin75°
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find sine of 47° 32'
Use trigonometrical tables to find tangent of 17° 27'
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
If the angle θ = –45° , find the value of tan θ.
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
Write the value of tan 10° tan 15° tan 75° tan 80°?
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
If 8 tan x = 15, then sin x − cos x is equal to
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
Evaluate: `(sin 80°)/(cos 10°)`+ sin 59° sec 31°
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`