Advertisements
Advertisements
Question
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Solution
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
= `(sin35^circ.cos(90^circ - 35^@) + cos35^circ.sin(90^circ - 35^circ))/(cosec^2(90^circ - 80^circ) - tan^2 80^circ)`
= `(sin35^circ.sin35^circ + cos35^circ.cos35^circ)/(sec^2 80^circ - tan^2 80^circ)`
= `(sin^2 35^circ + cos^2 35^circ)/(sec^2 80^circ - tan^2 80^circ)`
= `1/1`
= 1
APPEARS IN
RELATED QUESTIONS
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
Solve.
`tan47/cot43`
solve.
cos240° + cos250°
Evaluate:
sin 27° sin 63° – cos 63° cos 27°
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°