Advertisements
Advertisements
Question
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Solution
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
= sin2 34° + [sin2 (90° – 34°)]2 + 2 tan 18° tan (90° – 18°) – cot2 30°
= `sin^2 34^circ + cos^2 34^circ + 2 tan 18^circ cot 18^circ - (sqrt(3))^2`
= `1 + 2 tan 18^circ xx 1/(tan 18^circ) - 3` ...[∵ sin2θ + cos2θ = 1]
= 1 + 2 – 3
= 3 – 3
= 0
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0