Advertisements
Advertisements
Question
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Solution
L.H.S. = `(cosecA - sinA)(secA - cosA)`
= `(1/sinA - sinA)(1/cosA - cosA)`
= `((1 - sin^2A)/sinA)((1 - cos^2A)/cosA)`
= `(cos^2A/sinA)(sin^2A/cosA)`
= sin A cos A
R.H.S. = `1/(tanA + cotA)`
= `1/(sinA/cosA + cosA/sinA)`
= `1/((sin^2A + cos^2A)/(sinAcosA))`
= `(sinAcosA)/(sin^2A + cos^2A)`
= `(sinAcosA)/1`
= sin A cos A
∴ L.H.S. = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that cot2θ × sec2θ = cot2θ + 1
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A