English

Prove the following trigonometric identity: 1+sinA1-sinA=secA+tanA - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identity:

`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`

Sum

Solution

`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`

LHS = `sqrt((1 + sin A)/(1 - sin A)`

Rationalize the numerator abd denominator with `sqrt(1 + sin A)`

LHS = `sqrt(((1 + sin A)(1 + sin A))/((1 - sin A)(1 + sin A)))`

= `sqrt((1 + sin A)^2/(1 - sin^2 A))`

= `sqrt((1 + sin A)^2/(cos^2 A))`

= `(1 + sin A)/(cos A)`

= `1/(cos A) + (sin A)/(cos A)`

= sec A + tan A

= RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 37 | Page 44

RELATED QUESTIONS

 Evaluate sin25° cos65° + cos25° sin65°


 
 

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(1+ secA)/sec A = (sin^2A)/(1-cosA)` 

[Hint : Simplify LHS and RHS separately.]

 
 

Prove the following trigonometric identities.

(sec2 θ − 1) (cosec2 θ − 1) = 1


Prove the following trigonometric identities

`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`


Prove the following trigonometric identities.

`(1 + cos A)/sin A = sin A/(1 - cos A)`


If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


Prove the following identities:

`1/(secA + tanA) = secA - tanA`


Prove the following identities:

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


Prove the following identities:

`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`


Prove that:

cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A


Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`


Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 


If \[\cos A = \frac{7}{25}\]  find the value of tan A + cot A. 


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 

 

 


Prove the following identity :

 ( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ) 


Prove the following identity : 

`(cosecθ)/(tanθ + cotθ) = cosθ`


Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×