Advertisements
Advertisements
Question
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Solution
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
LHS = `sqrt((1 + sin A)/(1 - sin A)`
Rationalize the numerator abd denominator with `sqrt(1 + sin A)`
LHS = `sqrt(((1 + sin A)(1 + sin A))/((1 - sin A)(1 + sin A)))`
= `sqrt((1 + sin A)^2/(1 - sin^2 A))`
= `sqrt((1 + sin A)^2/(cos^2 A))`
= `(1 + sin A)/(cos A)`
= `1/(cos A) + (sin A)/(cos A)`
= sec A + tan A
= RHS
APPEARS IN
RELATED QUESTIONS
Evaluate sin25° cos65° + cos25° sin65°
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[Hint : Simplify LHS and RHS separately.]
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.